In vivo assessment of artery smooth muscle [Ca2+]i and MLCK activation in FRET-based biosensor mice.

نویسندگان

  • Jin Zhang
  • Ling Chen
  • Hema Raina
  • Mordecai P Blaustein
  • W Gil Wier
چکیده

The cellular mechanisms that control arterial diameter in vivo, particularly in hypertension, are uncertain. Here, we report a method that permits arterial intracellular Ca(2+) concentration ([Ca(2+)](i)), myosin light-chain kinase (MLCK) activation, and artery external diameter to be recorded simultaneously with arterial blood pressure (BP) in living mice under 1.5% isofluorane anesthesia. The method also enables an assessment of local receptor activity on [Ca(2+)](i), MLCK activity, and diameter in arteries, uncomplicated by systemic effects. Transgenic mice that express, in smooth muscle, a Ca(2+)/calmodulin-activated, Förster resonance energy transfer (FRET)-based "ratiometric", exogenous MLCK biosensor were used. Vasoactive substances were administered either intravenously or locally to segments of exposed femoral or cremaster arteries. In the basal state, mean BP was approximately 90 mmHg, femoral arteries were constricted to 65% of their passive diameter, MLCK fractional activation was 0.14, and [Ca(2+)](i) was 131 nM. Phenylephrine (300 ng/g wt iv) elevated mean BP transiently to approximately 110 mmHg, decreased heart rate, increased femoral artery [Ca(2+)](i) to 244 nM and fractional MLCK activation to 0.24, and decreased artery diameter by 23%. In comparison, local application of 1.0 muM phenylephrine raised [Ca(2+)](i) to 279 nM and fractional MLCK activation to 0.26, and reduced diameter by 25%, but did not affect BP or heart rate. Intravital FRET imaging of exogenous MLCK biosensor mice permits quantification of changes in [Ca(2+)](i) and MLCK activation that accompany small changes in BP. Based on the observed variance of the FRET data, this method should enable the detection of a difference in basal [Ca(2+)](i) of 29 nM between two groups of 12 mice with a significance of P < 0.05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time evaluation of myosin light chain kinase activation in smooth muscle tissues from a transgenic calmodulin-biosensor mouse.

Ca(2+)/calmodulin (CaM)-dependent phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) initiates smooth muscle contraction and regulates actomyosin-based cytoskeletal functions in nonmuscle cells. The net extent of RLC phosphorylation is controlled by MLCK activity relative to myosin light chain phosphatase activity. We have constructed a CaM-sensor MLCK wh...

متن کامل

A fluorescent resonant energy transfer–based biosensor reveals transient and regional myosin light chain kinase activation in lamella and cleavage furrows

Approaches with high spatial and temporal resolution are required to understand the regulation of nonmuscle myosin II in vivo. Using fluorescence resonance energy transfer we have produced a novel biosensor allowing simultaneous determination of myosin light chain kinase (MLCK) localization and its [Ca2+]4/calmodulin-binding state in living cells. We observe transient recruitment of diffuse MLC...

متن کامل

Calcium-independent contraction in lysed cell models of teleost retinal cones: activation by unregulated myosin light chain kinase or high magnesium and loss of cAMP inhibition

The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, rea...

متن کامل

A method for noninvasive longitudinal measurements of [Ca2+] in arterioles of hypertensive optical biosensor mice.

We used two-photon (2-p) Förster resonance energy transfer (FRET) microscopy to provide serial, noninvasive measurements of [Ca(2+)] in arterioles of living "biosensor" mice. These express a genetically encoded Ca(2+) indicator (GECI), either FRET-based exMLCK or intensity-based GCaMP2. The FRET ratios, Rmin and Rmax, required for in vivo Ca(2+) calibration of exMLCK were obtained in isolated a...

متن کامل

Ca2+ signaling in arterioles and small arteries of conscious, restrained, optical biosensor mice

UNLABELLED Two-photon fluorescence microscopy and conscious, restrained optical biosensor mice were used to study smooth muscle Ca(2+) signaling in ear arterioles. Conscious mice were used in order to preserve normal mean arterial blood pressure (MAP) and sympathetic nerve activity (SNA). ExMLCK mice, which express a genetically-encoded smooth muscle-specific FRET-based Ca(2+) indicator, were e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 299 3  شماره 

صفحات  -

تاریخ انتشار 2010